If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56=3w^2+2w
We move all terms to the left:
56-(3w^2+2w)=0
We get rid of parentheses
-3w^2-2w+56=0
a = -3; b = -2; c = +56;
Δ = b2-4ac
Δ = -22-4·(-3)·56
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-26}{2*-3}=\frac{-24}{-6} =+4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+26}{2*-3}=\frac{28}{-6} =-4+2/3 $
| 2(x+9)-8=14 | | 2.85+a=7.10 | | 8(x+2)+14=86 | | $2.85+a=7.10 | | 24=14u-8u | | 3x+2=104.50 | | 10(x+12)-8=112 | | 1(x+4)+9=8 | | i/3-4=2 | | 10(x+15)=100 | | X+x(8.5)=110.5 | | 3(x+10)-8=-2 | | 64-32x=55-34x | | x+2x-4-x+8=2x-1 | | 4x^2-8x+16=28 | | 8(x+4)-13=67 | | 64-32x=33-34x | | 9(x+14)=153 | | 3(x+5)=5(x-1) | | 4(x-13)-11=-67 | | 22x+(16x-1)=232 | | 24=4v+8 | | -10=-4+w/3 | | 3(x+4)+19=61 | | y÷5=21.9 | | 8(x+10)-5=27 | | -874=3(17x+1)-4 | | 5(x+16)=110 | | 2(x+16)-18=12 | | 7(x-11)-8=-43 | | 4(x+15)+14=42 | | -42=-u/8 |